Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Virol ; 165: 105498, 2023 08.
Article in English | MEDLINE | ID: covidwho-20231170

ABSTRACT

BACKGROUND: Concerns around accuracy and performance of rapid antigen tests continue to be raised with the emergence of new SARS-CoV-2 variants. OBJECTIVE: To evaluate the performance of two widely used SARS-CoV-2 rapid antigen tests during BA.4/BA.5 SARS-CoV-2 wave in South Africa (May - June 2022). STUDY DESIGN: A prospective field evaluation compared the SARS-CoV-2 Antigen Rapid test from Hangzhou AllTest Biotech (nasal swab) and the Standard Q COVID-19 Rapid Antigen test from SD Biosensor (nasopharyngeal swab) to the Abbott RealTime SARS-CoV-2 assay (nasopharyngeal swab) on samples collected from 540 study participants. RESULTS: Overall 28.52% (154/540) were SARS-CoV-2 RT-PCR positive with median cycle number value of 12.30 (IQR 9.30-19.40). Out of the 99 successfully sequenced SARS-CoV-2 positive samples, 18 were classified as BA.4 and 56 were classified as BA.5. The overall sensitivities of the AllTest SARS-CoV-2 Ag test and Standard Q COVID-19 Ag test were 73.38% (95% CI 65.89-79.73) and 74.03% (95% CI 66.58-80.31) and their specificities were 97.41% (95% CI 95.30-98.59) and 99.22% (95% CI 97.74-99.74) respectively. Sensitivity was >90% when the cycle number value was <20. The sensitivity of both rapid tests was >90% in samples infected with Omicron sub-lineage BA.4 and BA.5. CONCLUSION: Accuracy of tested rapid antigen tests that target the nucleocapsid SARS-CoV-2 protein, were not adversely affected by BA.4 and BA.5 Omicron sub-variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , South Africa , COVID-19/diagnosis , Biological Assay , Nucleocapsid Proteins , Sensitivity and Specificity
3.
J Infect Dis ; 226(8): 1412-1417, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2004993

ABSTRACT

We evaluated the performance of nasal and nasopharyngeal Standard Q COVID-19 [coronavirus disease 2019] Ag tests (SD Biosensor) and the Panbio COVID-19 Ag Rapid Test Device (nasal; Abbott) against the Abbott RealTime severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay during the Omicron (clades 21M, 21K, and 21L) wave in South Africa. Overall, all evaluated tests performed well, with high sensitivity (range, 77.78%-81.42%) and excellent specificity values (>99%). The sensitivity of rapid antigen tests increased above 90% in samples with cycle threshold <20, and all 3 tests performed best within the first week after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity , South Africa
4.
Nat Commun ; 13(1): 4686, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1984389

ABSTRACT

SARS-CoV-2 Omicron (B.1.1.529) BA.4 and BA.5 sub-lineages, first detected in South Africa, have changes relative to Omicron BA.1 including substitutions in the spike receptor binding domain. Here we isolated live BA.4 and BA.5 viruses and measured BA.4/BA.5 neutralization elicited by BA.1 infection either in the absence or presence of previous vaccination as well as from vaccination without BA.1 infection. In BA.1-infected unvaccinated individuals, neutralization relative to BA.1 declines 7.6-fold for BA.4 and 7.5-fold for BA.5. In vaccinated individuals with subsequent BA.1 infection, neutralization relative to BA.1 decreases 3.2-fold for BA.4 and 2.6-fold for BA.5. The fold-drop versus ancestral virus neutralization in this group is 4.0-fold for BA.1, 12.9-fold for BA.4, and 10.3-fold for BA.5. In contrast, BA.4/BA.5 escape is similar to BA.1 in the absence of BA.1 elicited immunity: fold-drop relative to ancestral virus neutralization is 19.8-fold for BA.1, 19.6-fold for BA.4, and 20.9-fold for BA.5. These results show considerable escape of BA.4/BA.5 from BA.1 elicited immunity which is moderated with vaccination and may indicate that BA.4/BA.5 may have the strongest selective advantage in evading neutralization relative to BA.1 in unvaccinated, BA.1 infected individuals.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
5.
Nature ; 607(7918): 356-359, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830078

ABSTRACT

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Ad26COVS1/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Protection/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL